"Harnessing Sn-117m for Improved Quality of Life"

Nigel R. Stevenson, Ph.D.

President, WCI Exubrion Therapeutics, Inc.

nstevenson@exubrion.com

10ICI, Kuala Lumpur (February 2020)

Unique Characteristics of Sn-117m

Major Emissions	Energy, KeV	Intensity, %	 Mono-energetic ~140 KeV discr have an averag
Auger-L	3	91.0	Lower exter
Auger-K	21	10.8	
CE*-K1	126.8	66.3	hospitalizatio
CE-K2	129.4	11.9	
CE-L1	151.6	27.3	>CE have be
CE-L2	154.1	1.5	apoptosis
CE-M1	155.1	5.6	Half-life of 14 d
Gamma	158.6	86.4	treatment requi
			Logistic flex
			➢Cell division dosing
*CE = Conve	ersion Electron		🔹 Gamma ray (15

No High Energy Emissions

- c conversion electrons of ete energy for therapy e range of ~300 µm
 - nal radiation
 - lling and reduced n containment
 - en proven to induce
- lays is consistent with irements
 - xibility
 - n cycles and therapy
- 9 KeV) similar toTc-99m (140 KeV) allowing for existing standard gamma camera imaging & techniques

Comparing Energy Types for Radiopharmaceuticals

Tin-117m is Unique

Production of Sn-117m

Reactors:

Sn-116(n,γ)Sn-117m

Sn-117(n,n'γ)Sn-117m

Accelerators:

Sb-nat(p,x)Sn-117m

Cd-116(α,3n)Sn-117m

Accelerator production of Sn-117m

Cd-116(α,3n)Sn-117m

- Traditionally limited by availability of suitable accelerators and/or beam current (< 70 μA)</p>
- New high-current accelerator (2mA+) coming on-line in 2 years
- Provides (commercially viable) possibility for labeling molecules, etc.

The thick target yield over the energy range of $47 \rightarrow 20$ MeV is about 150 μ Ci/ μ Ah

Tin-117m: Past Work & Development

- Suresh Srivastava, BNL, performed Bone Pain Palliation ([Sn-117m]-DTPA) studies and trials
 - >120 subjects successfully treated
- **Cardiovascular** Vulnerable/Unstable Plaque ([Sn-117m]-DOTA-Annexin)
 - Imaged in human clinical trials
 - Therapy in animals confirmed
- Osteoarthritis and Rheumatoid Arthritis (Sn-117m colloid)
 - Animal models
- Lymphoma and Leukemia
 - Labeled molecules targeted conditions
- Linking to Antibodies
 - Excellent labeling efficiencies breast cancer targeting
- Medical Devices: Cholangiocarcinoma Stent
 - IP for superior electroplating method for other medical devices
- Alzheimer's disease
 - Targeting molecules linked to Sn-117m
 - Human brain dosimetry demonstrated

Cardiovascular - Vulnerable Plaque

Vulnerable plaque forms outside of the lumen in coronary/carotid artery walls inflammation is the main driver

♦ VP is usually covered by a thin cap on the lumen side [thus also called thin cap fibroatheroma (TCFA)]

✤Majority of all significant cardiac events (60-70%) leading to MI and sudden cardiac death are a result of VP, not calcified lumen atherosclerosis

Treatment of inoperable symptomatic high grade carotid stenosis

Ruptured thin cap "releases" highly thrombogenic material activating clotting cascade and inducing thrombosis

Luminal Calcified Plaque

Cardiovascular Imaging and therapy

THE PRODUCT IS COMPRISED OF A RADIOISOTOPE, TIN-117M, THAT IS HELD WITHIN A DOTA MOLECULE WHICH IS LINKED TO A TARGETING MOLECULE, ANNEXIN V

Tin-117m

- Imaging gamma compatible with existing gamma cameras
- Therapeutic conversion electron has strong ionization effect over relevant biological range
- 14 day half-life

Aminobenzyl DOTA

Securely holds the Tin-117m

Annexin V

- Naturally occurring human protein
- Annexin V binds to specific cell membrane chemicals that are expressed in apoptotic inflammatory cells

Imaging, Autoradiograph and Histology

10ICI (Kuala Lumpur)

Oncology: Bone Pain Palliation and Therapy

Metastatic bone pain where all other treatments failed

□ [Sn-117m]-DTPA

□ Phase I/II Trial with over 120 patients

□ Relief of pain of 75% (60-83%)

Minimal myelotoxicity

Response to ¹¹⁷Sn(4+)-DTPA In a patient with prostate carcinoma metastatict to bone. Analgesia Score refers to number of doses required per day

Sn-117m DTPA: Planned Clinical Studies

- □ NCI collaborating with commercial company (Serene)
- Repeat of original formulation to establish standards
- □ Sn-117m DTPA with *possible* improved formulation:
 - □ Simpler production method
 - Less free DTPA
 - □ Higher specific activity
- Manufacturing development underway
- US Phase 1 trials planned to start later this year

Cholangiocarcinoma Stent

Stainless steel laser cut electroplated stents

Treat Symptoms

stent expands to open the occluded duct – palliation of symptoms

Treat Cancer

- conversion electron (C.E.) emitting metallic isotope treat cancer, reduces tumor mass
- electroplating metallic dendrites increases dosimetry surface area

Resolves Issues with Existing Stents

- Prevents migration
- suppress microbial burden organism-induced biofilm and fungal mass occlusion

Radiosynoviorthesis Isotopes

Isotope	t1/2	Imaging	Energy	Therapy	Max	Range (mean)	Range (max)	Typical	Joint
	(d)	Particle	(keV)	Particle	Energy	in Tissue	in Tissue	Dose	Size
					(keV)	(mm)	(mm)	(mCi)	
Sn-117m	13.6	γ	159	CE	151	0.27	0.29	0.5-1.0	Small/Med
Er-169	9.3	None	-	β⁻	350	0.14	1.1	1	Small
Re-186	3.7	γ	137	β⁻	1070	1.1	4.4	2.5	Medium
Y-90	2.7	None	-	β⁻	2280	4.1	11	4	Large
P-32	14.3	None	-	β⁻	1711	2.8	8.4	2	Large
Au-198	2.7	γ	412	β⁻	960	0.9	4.2	7	Large/Med
Sm-153	1.9	γ	103	β⁻	808	0.55	3.3	5	Medium
Re-188	0.7	γ	155	β⁻	2120	3.1	10.4	10	Large
Ho-166	1.1	γ	81	β⁻	1855	2.6	9.2	10	Large
Dy-165	0.1	γ	95	β⁻	1289	1.3	5.9	270	Large
Tm-170	129	γ	84	β⁻	968	0.9	4.2	1.6-4.8	Medium

Homogeneous Tin-117m Colloid for RSO

Test	Method	Specification
Appearance	Visual inspection	White turbid particles and white, cream or pale- red colored solution ¹
рН	microprobe	6.5 - 9.0
Median Particle Size (PS)	Horiba Model LA-300 Particle Size Analyzer	2.5 - 6 μm
Particle Size Range (D10 to D90)	Horiba Model LA-300 Particle Size Analyzer	≥ 90% above 1.5 µm ≥ 90% below 20 µm
Endotoxin	Kinetic-chromogenic (Charles River Endosafe PTS)	< 58 EU/mL
Sterility	ISO 20857	SAL $\ge 10^{-6}$ Sterile based on visual assessment of BI colors
Free Sn	Radioactivity measurement	≤ 0.2%

RSO - Tissue Autoradiography

Phagocytosed colloidal particles (unaltered) migrate deeper in tissues to areas of sub-synovial inflammation

Potential to treat larger joints, for a longer time and with a much lower dose

- CBPI Success (successful reduction of pain AND successful increase in level of activity as compared to baseline values)
- CBPI Improved (successful reduction of pain OR successful increase in level of activity with no worsening from baseline values)

Dose	mCi	MBq
Low	1.0	37.0
Medium	2.4	88.8
High	6.0	222.0

Procedure/ parameter	Screening	Study Week								EOS
		1	2	3	5	9	14	27	40	53
^{117m} Sn scan (γ camera)		×	x		x					
Plain X-rays of both knees	Х									
Ultrasound	x				х		x	х		X
Treatment (RSO)		Х								

OA and RA Trial in Canada. Approved to proceed.

Neurology – Treatment of Alzheimer's Disease

Microglia are Recognized as an Upstream Link in the Cascade to Amyloid Beta (AB) Plaque Formation

Microglia (MG) are the "macrophages" of the brain and are hyperreactive in AD

 Tin-Annexin V actively crosses the Blood Brain Barrier (BBB) and induces apoptosis in macrophages
 Annexin A1 crosses and stabilizes/repairs the BBB, and is strongly expressed in AD

Sn-117m is linked to the 8AA that binds to RAGE V-domain

Neurology - NeuroSn Approach

Systemically delivered Tin-annexin V resides in subjects with injured BBB

Microglia as a Target for AD Treatment

- Tin-Annexin V must enter and reside in the brain in order to induce apoptosis in aged microglia
- Systemic (IV) delivery of Tin-Annexin V to human brain validated in human dosimetry study
- Mouse trials can determine in 3 to
 9 months reduction in β amyloid
 plaque and τ neurofibrillary tangles

Neuroinflammatory Hypothesis: Microglia are in the pathway to $A\beta$ formation

4-(DOTA-2-yl-methyl)-phenylcarbamothioyl-β-Ala-His-His-Gln-Lys-Leu-Val-Phe-Ala-Glu-Asp-OH trifluoroacetate salt

A RAGE-targeting molecule containing a critical 8 amino acid (aa) portion plus Sn-117m linked DOTA has been constructed

Conclusion

- □Sn-117m produced cGMP
- □High (accelerator) and low (reactor) sp. act.
- Labeling to variety of molecules
- Electroplating and colloids
- Applications in:
 - Cardiology (vulnerable/unstable plaques)
 - Rheumatology (OA, RA)
 - □ Neurology (Alzheimer's)
 - Oncology
 - Uveterinary and human

□Imaging and Therapy (High Dose and Hormetic)